Will Whole Genome Sequencing Pathogens Revolutionise Infectious Diseases and Public Health?

Derrick Crook Public Health England University of Oxford Oxford University Hospitals FT Trust

What do we need?

- Accurate species identification
- Feature identification (e.g. resistance prediction; toxin and virulence prediction)
- High resolution typing to identify and characterise outbreaks e.g. time scaled phylogenies/genealogies (family trees)
- Fast, cheap, accurate outputs and on all specimens/isolates
- Linkage to pathogen phenotype and patient epidemiological/clinical record data as an enduring encyclopaedic store of information

Concept for ideal whole genome sequencing solution

Nature Reviews Genetics 13, 601-612 (September 2012)

Nature Reviews | Genetics

What are the challenges

- To go from research proof-of-principle to a fully accredited service
 - Systematic well validated method for extracting and purifying nucleic acids
 - Sequencing platform which is stable and produces reproducible results
 - Software for processing the data yielding:
 - Species identification
 - Feature prediction curated knowledge bases
 - Resistance prediction
 - Pathotype
 - Transmission cluster identification
 - Linkage to epidemiological and clinical record data data protection compliant
 - Software for reporting and presentation/visualisation of data
 - Persistent storage and sharing to benefit from a complete landscape within a species
 - Clinical validation
 - Accreditation

Seven pillars of wisdom needed if each pathogen

ð.

Public Health England

Will give 3 exemplars

- Clostridium difficile
- Enterobacterial carbapenemase resistance
- Mycobacterium tuberculosis TB

Clostridium difficile

Role of symptomatic patients in *C. difficile* transmission

- We sequenced 1223 of all 1251 hospital and community CDI cases (98%) in Oxfordshire, September 2007 – March 2011
- Hospital admission and ward movement data, and home postcode district and GP location available for each case

- 3 Hospitals
 - Typical CDI incidence
 - Infection control in line with published guidelines
 Evre: N Engl J Med 2013; 369:1195-1205

<u>Łōż</u>

Public Health England

Applying sequencing

Reproducible sequencing

• 180 genomes sequenced more than once, 1 false SNV per 90 genomes

Source of new C. difficile cases

All cases

Genetic Matches (0-2 SNV)

N Engl J Med 2013; 369:1195-1205

Selection, dispersal and control of C. difficile

Change in incidence and quinolone usage nationally

Dingle; Lancet Infect Dis 2017; 17: 411-21

Oxfordshire C. difficile cases

Oxfordshire C. difficile cases

Oxfordshire C. difficile cases

Oxfordshire C. difficile cases

Fluoroquínolone resístant Declining CDI in Oxford

Dingle; Lancet Infect Dis 2017; 17: 411-21

Incidence of FQ resistant genotypes has declined (1)

Green line: number of cases (per month) predicted by a Poisson model, (with time as the only covariate), modelling FQ resistant cases (blue) to illustrate declining incidence.

Incidence of FQ resistant genotypes has declined (2)

Green line: number of cases (per month) predicted by a Poisson model, (with time as the only covariate), modelling FQ resistant cases (blue) to illustrate declining incidence.

Changes in quinolone resistance over time

Phylogenetic patterns of quinolone resistant vs susceptible

Dingle; Lancet Infect Dis 2017; 17: 411-21

The decline of *C. difficile* in England

- It has declined by close to 70% since 2006
- Quinolone use declined by ~ 50% preceding the decline in CDI
- The decline is attributable to the simultaneous disappearance of 4 quinolone resistant lineages. The remaining 69 lineages are largely unchanged in incidence
- Resistant lineages had undergone rapid clonal expansion and were geographically structured
- A quinolone effect is a likely explanation for the decline in CDI

Carbapenemase resistance in Enterobacteriacea

A single hospital

25%

Antimicrob. Agents Chemother; April 2016

bla_{KPC} in Virginia

- Virginia "outbreak" ongoing since August 2007
- 281 *bla*_{KPC}-positive Enterobacteriaceae
 - Isolated August 2007 December 2012
 - From 182 patients
 - All Illumina sequenced
- Multiple species of *bla*_{KPC}-positive Enterobacteriaceae
 - 9 different genera
 - 13 different species
 - 62 different "strains" (defined conservatively as ~500 SNPs variation in "core")

Idealised outbreak timeline – what we'd like to see

What did we see - enormous host strain diversity

Enormous host strain diversity

Plasmid-mediated outbreak?

- Hypothesis: outbreak is driven by one or a few promiscuous plasmids carrying bla_{KPC}
- Assumption: plasmid structures relatively stable within outbreak
- Approach:
 - Generate outbreak-specific plasmid references (index patient)
 - Use these to assess plasmid presence across outbreak isolates
 - Definition: ≥99% sequence identity over ≥80% reference length
 - Assessed via BLASTn (reference plasmid vs isolate's de novo assembly)
 - Stringent identity threshold: expect few SNP changes
 - Lenient length threshold: single events can affect large regions
 - Note: does not assess structural continuity (since this is impossible in many isolates due to repeat structures)

- Two bla_{KPC} conjugative plasmids from index patient
 - pKPC_UVA01 (43,621 bp) and pKPC_UVA02 (113,105 bp)

- Two bla_{KPC} conjugative plasmids from index patient
 - pKPC_UVA01 (43,621 bp) and pKPC_UVA02 (113,105 bp)

Species	Isolates
Citrobacter amalonaticus	2
Citrobacter freundii	30
Enterobacter aerogenes	4
Enterobacter asburiae	1
Enterobacter cloacae	96
Escherichia coli	2
Klebsiella oxytoca	35
Klebsiella pneumoniae	94
Kluyvera intermedia	7
Proteus mirabilis	1
Raoultella ornothinolytica	1
Serratia marcescens	5
Other (unknown)	3
Total	281

- Two **bla_{KPC}** conjugative plasmids from index patient
 - pKPC_UVA01 (43,621 bp) and pKPC_UVA02 (113,105 bp)

Species	Isolates	pKPC_UVA01
Citrobacter amalonaticus	2	1
Citrobacter freundii	30	29
Enterobacter aerogenes	4	2
Enterobacter asburiae	1	0
Enterobacter cloacae	96	84
Escherichia coli	2	1
Klebsiella oxytoca	35	9
Klebsiella pneumoniae	94	31
Kluyvera intermedia	7	7
Proteus mirabilis	1	1
Raoultella ornothinolytica	1	1
Serratia marcescens	5	0
Other (unknown)	3	0
Total	281	166 (59%)

- Two **bla_{KPC}** conjugative plasmids from index patient
 - pKPC_UVA01 (43,621 bp) and pKPC_UVA02 (113,105 bp)

Species	Isolates	pKPC_UVA01	pKPC_UVA02
Citrobacter amalonaticus	2	1	0
Citrobacter freundii	30	29	7
Enterobacter aerogenes	4	2	0
Enterobacter asburiae	1	0	0
Enterobacter cloacae	96	84	2
Escherichia coli	2	1	0
Klebsiella oxytoca	35	9	25
Klebsiella pneumoniae	94	31	18
Kluyvera intermedia	7	7	0
Proteus mirabilis	1	1	0
Raoultella ornothinolytica	1	1	0
Serratia marcescens	5	0	0
Other (unknown)	3	0	0
Total	281	166 (59%)	52 (19%)

- Two **bla_{KPC}** conjugative plasmids from index patient
 - pKPC_UVA01 (43,621 bp) and pKPC_UVA02 (113,105 bp)

Species	Isolates	pKPC_UVA01	pKPC_UVA02	Neither	
Citrobacter amalonaticus	2	1	0	1	
Citrobacter freundii	30	29	7	1 (3%)	
Enterobacter aerogenes	4	2	0	2	
Enterobacter asburiae	1	0	0	1	
Enterobacter cloacae	96	84	2	10 (10%)	mastlyknown
Escherichia coli	2	1	0	1	
Klebsiella oxytoca	35	9	25	1 (3%)	endemic cione
Klebsiella pneumoniae	94	31	18	45 (48%)	
Kluyvera intermedia	7	7	0	0	described with
Proteus mirabilis	1	1	0	0	other plasmids
Raoultella ornothinolytica	1	1	0	0	
Serratia marcescens	5	0	0	5	
Other (unknown)	3	0	0	3	
Total	281	166 (59%)	52 (19%)	70 (25%)	

→ Consistent with local plasmid-mediated outbreak, plus occasional imports from other healthcare institutions

Long-read sequencing

- Needed to validate conclusions, given structural uncertainties of short-read WGS
- PacBio sequencing
 - 17 **randomly chosen** isolates
 - Fully closed plasmid structures

11 different *bla*_{KPC} (*) plasmids among 80!

Structural diversity of pKPC_UVA01

A highly dynamic dispersal of KPC within the clinical ecosystem

- KPC dispersing at 3 scales:
 - Isolates spreading KPC between patients
 - Frequent transfer of $bla_{\rm KPC}$ plasmids between strains/species
 - Frequent transfer of $bla_{\rm KPC}$ transposon Tn4401 between plasmids

Public Health England

• Where's the reservoir?

UVa sink study

Applied and Environmental Microbiology April 2017 Volume 83 Issue 8 e03327-16

CPE E. coli were found in > 10 CFU/CM³ in the basins

1.7E+03 0F+07

X)

Public Health

England

10¹⁰ (a)

10⁸

10

10

CFUs/ ml

FIG 1 GFP-expressing *E. coli* detected in the P-traps attached to each of the sinks on day 0 (black bars) and day 7 (gray bars) using (a) 10³, (b) 10⁶, and (c) 10¹⁰ CFU/ml as the starting inoculum concentrations in sink 5.

University of Virginia Hospital intervention

Mycobacteria

- Use this as the example of how to implement a WGS solution into clinical and public health practice
- Give a sense of what the future holds?

The TB problem

- It is a leading infectious disease world-wide
 - In 2014, 1.5 m died; 9.6 m developed TB; 0.5m MDR-TB, and **1/3 undiagnosed**
- Case detection is relatively poor
 - Full microbiological diagnosis is complex, error prone and slow
- Spread is mostly person-to-person with a small zoonotic reservoir
- Can be effectively treated
 - Most treatment is initially empiric; prolonged, and can produce drug resistance
- Can be prevented and even eliminated?
 - Better diagnosis seen as an imperative e.g Cepheid GeneXpert tb/rif

What we can deliver with WGS?

- Developed a MGIT dependent workflow and a software yielding the following:
 - Increasingly fast, cheap and accurate outputs that can be stored and shared Lancet Respir Med. 2016 Jan;4(1):49-58; J Clin Microbiol. 2018 Jan 24;56(2).
 - Accurate species identification Lancet Respir Med. 2016 Jan;4(1):49-58; J Clin Microbiol. 2018 Jan 24;56(2).
 - Resistance prediction Lancet Infect Dis 2015;15: 1193–1202; Lancet Respir Med. 2016 Jan;4(1):49-58; J Clin Microbiol. 2018 Jan 24;56(2).
 - Outbreak detection Lancet Infect Dis 2015;15: 1193–1202; Wyllie. under review
 - Linkage to pathogen phenotype and patient epidemiological/clinical record data yielding information for treating patients and directing outbreak investigation In pilot deployment.

Full national implementation in England

- Sequencing approximately 30,000 samples/year
- DST will be stopped when predicting susceptibility to the 4 first line drugs
 - Based on:

Analysis of 10,000 isolates from across the world

	NPV, %
	(95% CI)
Isoniazid	98.6 (98.3-98.9)
Rifampicin	99.0 (98.7-99.2)
Ethambutol	98.8 (98.5-99.1)
Pyrazinamide	98.7 (98.4-99.0)

Diagnostically there is < 2% chance the isolate will be falsely resistant

Where are the gaps?

- We need:
 - a comprehensive knowledge base of genomic variants conferring resistance
 - a faster sequencer
 - faster software
 - to process direct from a sample and be equivalent/better than genexpert

Anti-tuberculosis drug resistance prediction

- Arguably 15 drugs are available for treating TB with more new drugs in development
- Is genomic variation which confers resistance limited to somewhere between 20 to 30 genes?
- Current knowledge indicates molecular prediction of INH, rifampicin resistant or pan-susceptible isolates is ~ 95% accurate
- The knowledge base of variation conferring resistance to 'all drugs' is incomplete

Filling the resistance gap

Comprehensive Resistance Prediction for Tuberculosis: an International Consortium (CRyPTIC)

Phenotyping

BDQ 2	KAN 16	KAN 8	KAN 4	KAN 2	KAN 1	ETH 8	ETH 4	ETH 2	ETH 1	ETH 0.5	ETH 0.25
BDQ 1	AMI 8	EMB 8	INH 1.6	LEV 8	MXF 4	DLM 1	LZD 2	CFZ 4	RIF 4	RFB 2	PAS 4
BDQ 0.5	AMI 4	EMB 4	INH 0.8	LEV 4	MXF 2	DLM 0.5	LZD 1	CFZ 2	RIF 2	RFB 1	PAS 2
BDQ 0.25	AMI 2	EMB 2	INH 0.4	LEV 2	MXF 1	DLM 0.25	LZD 0.5	CFZ 1	RIF 1	RFB 0.5	PAS 1
BDQ 0.125	AMI 1	EMB 1	INH 0.2	LEV 1	MXF 0.5	DLM 0.125	LZD 0.25	CFZ 0.5	RIF 0.5	RFB 0.25	PAS 0.5
BDQ 0.06	AMI 0.5	EMB 0.50	INH 0.1	LEV 0.5	MXF 0.25	DLM 0.06	LZD 0.125	CFZ 0.25	RIF 0.25	RFB 0.125	PAS 0.25
BDQ 0.03	AMI 0.25	EMB 0.25	INH 0.05	LEV 0.25	MXF 0.125	DLM 0.03	LZD 0.06	CFZ 0.125	RIF 0.125	RFB 0.0625	PAS 0.125
BDQ 0.015	EMB 0.0625	EMB 0.125	INH 0.025	LEV 0.125	MXF 0.0625	DLM 0.015	LZD 0.03	CFZ 0.0625	RIF 0.0625	POS control	POS control
			_	_			-	and the second se	and the second	ALC: N	Philip Fowler 🕘 😂 📿

Pyrazinamide will be done by MGIT liquid culture

BUIS People powered research zooniverse.org Twitter: @bashthebug

Genotypic characterisation

- 100,000 WGS TB pledged
- ~ 40,000 with extensive DST
- Analysis:
 - Heuristic approach
 - GWAS
 - Machine Learning
 - Thermodynamic modelling of proteins
 - Molecular genetic characterisation

A faster sequencer

How long does it take?

UNIVERSITY OF OXFORD

Decontamination DNA extraction Library preparatio Enrichment Sequencing Bioinformatics

J Clin Microbiol. 2017 May;55(5):1285-1298

X Public Health England

Direct from a sample

Can we do it direct from sputum?

All samples \geq 1+ positive for AFB

J Clin Microbiol. 2017 May;55(5):1285-1298

A faster software

What limits of detection are we aiming for?

0 – 4+	AFB/ml	HPF/AFB	Genexpert	WGS
4+	10,000,000	10	+	complete
3+	1,000,000	1	+	complete
2+	100,000	0.1	+	complete
1+	10,000	0.01	+	In-complete
scanty	3,000	0.003	+	In-complete

Establish a WGS software application on the cloud

- Accessible to users anywhere, anytime and will need:
 - reasonable internet bandwidth
 - Simple extraction
 - light-weight sequencing infrastructure
- Partners are setting up field sites in:
 - Mumbai
 - Ho Chi Minh City
 - Madagascar

A draft schema

The schema for diagnostics and prevention

Acknowledgements

- Sarah Walker
- Zamin Iqbal EBI
- Tim Peto
- Guy Thwaites Vietnam
- Mark Wilcox Leeds
- Grace Smith Birmingham
- Philip Monk Leicester
- Tim Walker Oxford
- Esther Robinson Birmingham
- Research Fellows (6)
- Martin Dedicote Birmingham
- David Moore LSHTM and Peru

Microbiology, DNA preparation

- Dai Griffiths
- Kate Dingle
- Nicole Stoesser
- Alison Vaughan
- Bernadette Young
- Claire Gordon

International

JNIVERSITY OF

Oxford High Throughput Sequencing Hub team People participating in the studies

Informatics

- David Wyllie
- Fan Turner
- Martin Hunt
- Trien Do
- Jeremy Swann

Bioinformatics and Population Biology

- Danny Wilson
- Carlos del Ojo Elias
- Saheer Gharbia
- Tanya Golubchik
- Anna Sheppard
- Dilrini de Silva
- Xavier Didelot
- Jess Hedge

.

